Alteration of Energy Substrates and ROS Production in Diabetic Cardiomyopathy
نویسندگان
چکیده
Diabetic cardiomyopathy is initiated by alterations in energy substrates. Despite excess of plasma glucose and lipids, the diabetic heart almost exclusively depends on fatty acid degradation. Glycolytic enzymes and transporters are impaired by fatty acid metabolism, leading to accumulation of glucose derivatives. However, fatty acid oxidation yields lower ATP production per mole of oxygen than glucose, causing mitochondrial uncoupling and decreased energy efficiency. In addition, the oxidation of fatty acids can saturate and cause their deposition in the cytosol, where they deviate to induce toxic metabolites or gene expression by nuclear-receptor interaction. Hyperglycemia, the fatty acid oxidation pathway, and the cytosolic storage of fatty acid and glucose/fatty acid derivatives are major inducers of reactive oxygen species. However, the presence of these species can be essential for physiological responses in the diabetic myocardium.
منابع مشابه
A Review on 17-β estradiol a Potent Therapeutic Factor of Diabetic Cardiomyopathy
Type 2 diabetes causes structural and functional changes in the myocardium, which is called cardiomyopathy. Diabetic cardiomyopathy (DCM) is a distinct primary disorder process, independent of coronary artery disease, which leads to heart failure in diabetic patients. Also, DCM is a multifaceted disorder that is one of the leading causes of death in elderly and postmenopausal women. Menopause i...
متن کاملEffect of Lamium Album on Mitochondrial Oxidative Stress in Diabetic Rats
Background: Diabetes mellitus (DM) is characterized by the presence of hyperglycemia. It has been documented that oxidative stress and reactive oxygen species (ROS) production have a key role in the pathogenesis of diabetes and its complications. Neutrophils as a part of immune system produce ROS, neutrophils function might be altered in diabetes. Lamium album is known to have antioxidant, and ...
متن کاملActivation of Toll-Like Receptors and Inflammasome Complexes in the Diabetic Cardiomyopathy-Associated Inflammation
Diabetic cardiomyopathy is defined as a ventricular dysfunction initiated by alterations in cardiac energy substrates in the absence of coronary artery disease and hypertension. Hyperglycemia, hyperlipidemia, and insulin resistance are major inducers of the chronic low-grade inflammatory state that characterizes the diabetic heart. Cardiac Toll-like receptors and inflammasome complexes may be k...
متن کاملDownregulation of Profilin-1 Expression Attenuates Cardiomyocytes Hypertrophy and Apoptosis Induced by Advanced Glycation End Products in H9c2 Cells
Cardiomyocytes hypertrophy and apoptosis induced by advanced glycation end products (AGEs) is the crucial pathological foundation contributing to the onset and development of diabetic cardiomyopathy (DCM). However, the mechanism remains poorly understood. Here, we report that profilin-1 (PFN-1), a well-known actin-binding protein, serves as a potent regulator in AGEs-induced cardiomyocytes hype...
متن کاملCatalase protects cardiomyocyte function in models of type 1 and type 2 diabetes.
Many diabetic patients suffer from a cardiomyopathy that cannot be explained by poor coronary perfusion. Reactive oxygen species (ROS) have been proposed to contribute to this cardiomyopathy. Consistent with this we found evidence for induction of the antioxidant genes for catalase in diabetic OVE26 hearts. To determine whether increased antioxidant protection could reduce diabetic cardiomyopat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013